Enhanced Depolymerization of Actin Filaments by ADF/Cofilin and Monomer Funneling by Capping Protein Cooperate to Accelerate Barbed-End Growth
نویسندگان
چکیده
A living cell's ability to assemble actin filaments in intracellular motile processes is directly dependent on the availability of polymerizable actin monomers, which feed polarized filament growth [1, 2]. Continued generation of the monomer pool by filament disassembly is therefore crucial. Disassemblers like actin depolymerizing factor (ADF)/cofilin and filament cappers like capping protein (CP) are essential agonists of motility [3-8], but the exact molecular mechanisms by which they accelerate actin polymerization at the leading edge and filament turnover has been debated for over two decades [9-12]. Whereas filament fragmentation by ADF/cofilin has long been demonstrated by total internal reflection fluorescence (TIRF) [13, 14], filament depolymerization was only inferred from bulk solution assays [15]. Using microfluidics-assisted TIRF microscopy, we provide the first direct visual evidence of ADF's simultaneous severing and rapid depolymerization of individual filaments. Using a conceptually novel assay to directly visualize ADF's effect on a population of pre-assembled filaments, we demonstrate how ADF's enhanced pointed-end depolymerization causes an increase in polymerizable actin monomers, thus promoting faster barbed-end growth. We further reveal that ADF-enhanced depolymerization synergizes with CP's long-predicted "monomer funneling" [16] and leads to skyrocketing of filament growth rates, close to estimated lamellipodial rates. The "funneling model" hypothesized, on thermodynamic grounds, that at high enough extent of capping, the few non-capped filaments transiently grow much faster [15], an effect proposed to be very important for motility. We provide the first direct microscopic evidence of monomer funneling at the scale of individual filaments. These results significantly enhance our understanding of the turnover of cellular actin networks.
منابع مشابه
ADF/Cofilin Accelerates Actin Dynamics by Severing Filaments and Promoting Their Depolymerization at Both Ends
Actin-depolymerizing factor (ADF)/cofilins contribute to cytoskeletal dynamics by promoting rapid actin filament disassembly. In the classical view, ADF/cofilin sever filaments, and capping proteins block filament barbed ends whereas pointed ends depolymerize, at a rate that is still debated. Here, by monitoring the activity of the three mammalian ADF/cofilin isoforms on individual skeletal mus...
متن کاملControl of actin dynamics in cell motility.
Actin polymerization plays a major role in cell movement. The controls of actin sequestration/desequestration and of filament turnover are two important features of cell motility. Actin binding proteins use properties derived from the steady-state monomer-polymer cycle of actin in the presence of ATP, to control the F-actin/G-actin ratio and the turnover rate of actin filaments. Capping protein...
متن کاملCoordinated Regulation of Actin Filament Turnover by a High-Molecular-Weight Srv2/CAP Complex, Cofilin, Profilin, and Aip1
BACKGROUND Dynamic remodeling of the actin cytoskeleton requires rapid turnover of actin filaments, which is regulated in part by the actin filament severing/depolymerization factor cofilin/ADF. Two factors that cooperate with cofilin are Srv2/CAP and Aip1. Human CAP enhances cofilin-mediated actin turnover in vitro, but its biophysical properties have not been defined, and there has been no in...
متن کاملAip1 Destabilizes Cofilin-Saturated Actin Filaments by Severing and Accelerating Monomer Dissociation from Ends
BACKGROUND Depolymerization of actin filaments is vital for the morphogenesis of dynamic cytoskeletal arrays and actin-dependent cell motility. Cofilin is necessary for actin disassembly in cells, and it severs filaments most efficiently at low cofilin to actin ratios, whereas higher concentrations of cofilin suppress severing. However, the cofilin concentration in thymocytes is too high to all...
متن کاملSarcomeric actin organization is synergistically promoted by tropomodulin, ADF/cofilin, AIP1 and profilin in C. elegans.
Sarcomeric organization of thin and thick filaments in striated muscle is important for the efficient generation of contractile forces. Sarcomeric actin filaments are uniform in their lengths and regularly arranged in a striated pattern. Tropomodulin caps the pointed end of actin filaments and is a crucial regulator of sarcomere assembly. Here, we report unexpected synergistic functions of trop...
متن کامل